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Abstract We study the local minima and the critical values of a quadratic form on the trace
of a convex cone. This variational problem leads to the development of a spectral theory that
combines matrix algebra and facial analysis of convex cones.
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1 Introduction

1.1 Formulation of the problem and aim of this work

The Euclidean space R
n is equipped with the inner product 〈u, v〉 = uT v and the associated

norm ‖ · ‖. The dimension n is assumed to be greater than or equal to 2. The symbol Sn refers
to the unit sphere in R

n . We also use the notation

Sym(n) ≡ symmetric (real) matrices of size n × n,

�(Rn) ≡ closed convex cones in R
n .

We are concerned with the minimization of a quadratic form over the trace

K ∩ Sn = {u ∈ K : ‖u‖ = 1}
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that a cone K leaves on the unit sphere. More precisely, we want to identify the critical values
and the local solutions to the variational problem

minimize 〈u, Au〉 (1)

u ∈ K ∩ Sn .

One assumes that A ∈ Sym(n) and that K ∈ �(Rn) is non-trivial in the sense that it contains
at least one non-zero vector. Recall that x ∈ R

n is called a local solution to (1) if x ∈ K ∩ Sn

and there exists a neighborhood N of x such that 〈x, Ax〉 ≤ 〈u, Au〉 for all u ∈ K ∩Sn ∩ N .
The concept of critical value will be clarified in a moment.

Minimizing a quadratic form over the trace of a convex cone seems at first sight a narrow
concern, but such particular type of variational problem arises in many practical situations.
Interesting examples may be found, for instance, in the angular analysis of convex cones
[6–8] and in the modeling of elastic mechanical systems with frictionless contacts [9] or with
associated frictional contacts (prescribed normal reactions from the obstacle, a particular
case of [10,11]). The variational problem (1) is also of interest in a Hilbert space setting
[5,13], but we stick to finite dimensionality because in that way the connection to matrix
spectral analysis is more transparent. The normalization constraint ‖u‖ = 1 appearing in (1)
could be changed by something more general like 〈u, Bu〉 = 1, but this would only obscure
the presentation of our ideas.

The aim of the present work is threefold:

• To obtain upper bounds for the number of local minimal values of the variational problem
(1). We shall discuss how these bounds depend on the geometric structure of the convex
cone K .

• To explain why, under polyhedrality, it is possible to convert (1) into a finite collection of
subspace-constrained eigenvalue problems. From this collection of eigenvalue problems,
we shall draw all sort of information on the original variational problem (1). For instance,
we shall derive some localization results for the local minimal values.

• To formulate a sufficient criterion for local minimality which is simple and computation-
ally implementable. We also want to estimate how large is the neighborhood on which
local minimality takes place.

1.2 Necessary optimality conditions

First and second-order necessary optimality conditions for the variational problem (1) are
stated in the next theorem. In the sequel the notation

K + = {y ∈ R
n : 〈y, u〉 ≥ 0 ∀u ∈ K }

refers to the dual cone of K , the symbol y⊥ indicates the hyperplane orthogonal to y ∈ R
n ,

and “cl” stands for topological closure.

Theorem 1 Let A ∈ Sym(n) and K ∈ �(Rn). Let x ∈ R
n be a local solution to (1). Then,

x is a critical vector of (1) in the sense that

x ∈ K ∩ Sn and Ax − 〈x, Ax〉x ∈ K +. (2)

Furthermore, x satisfies the second-order optimality condition

〈h, [A − 〈x, Ax〉I ] h〉 ≥ 0 ∀h ∈ CK (x), (3)

where CK (x) = cl{[Ax − 〈x, Ax〉x]⊥ ∩ R+(K − x)} is a non-trivial closed convex cone
in R

n.
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Proof We pick up a displacement direction h in K − x and examine the behavior of the
quadratic form

u ∈ R
n �→ qA(u) = 〈u, Au〉

over the curve ψ : [0, ε] → R
n given by

ψ(t) = x + th

‖x + th‖ . (4)

We ask ε ∈]0, 1] to be small enough so that the denominator in (4) doesn’t vanish. Note that
ψ(t) corresponds to the normalization of γ (t) = x + th ∈ K . Hence, ψ is an admissible
curve emanating from x in the sense that ψ(0) = x and ψ(t) ∈ K ∩ Sn for all t ∈ [0, ε].
Since x is a local solution to (1), the choice t = 0 yields a local minimum for the univariate
function

t ∈ [0, ε] �→ g(t) = qA(ψ(t)) = 〈γ (t), Aγ (t)〉
‖γ (t)‖2 ,

and therefore the right-derivative

g′(0) = 2 〈Ax − 〈x, Ax〉x, h〉
is non-negative. But h ∈ K − x is arbitrary, so the vector y = Ax − 〈x, Ax〉x must be in
the dual cone of K . This takes care of (2). For obtaining (3) we rely on the second-order
Maclaurin expansion

g(t) = g(0)+ tg′(0)+ 1

2
t2g′′(0)+ t2δ(t),

where δ(t) → 0 as t → 0+. If the displacement direction h ∈ K − x is orthogonal to y, then
g′(0) = 0 and the second-order right-derivative

g′′(0) = 2 〈h, [A − 〈x, Ax〉I ] h〉
is non-negative. This proves that

〈h, [A − 〈x, Ax〉I ] h〉 ≥ 0 ∀h ∈ y⊥ ∩ (K − x).

The above inequality can be extended to h ∈ y⊥ ∩ R+(K − x) by using a positive homo-
geneity argument, and then to h ∈ CK (x) by using a continuity argument. That CK (x) is a
non-trivial closed convex cone in R

n is clear. ��
The above proof of Theorem 1 relies on the technique of admissible curves. As alternative

proof method one could consider a Lagrange multiplier approach. Due to the special structure
of the feasible set we don’t have to worry here about constraint qualification assumptions.

It is not difficult to see that the second-order optimality condition (3) can be written in the
equivalent form

〈h, Ah〉 ≥ 〈x, Ax〉 ∀h ∈ CK (x), ‖h‖ = 1. (5)

Since x is a unit vector belonging to CK (x), the inequality (5) amounts to saying that x is a
global solution to the minimization problem

minimize 〈h, Ah〉 (6)

h ∈ CK (x) ∩ Sn .
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By the way, if K were an arbitrary closed convex set, then (6) could be seen as a “conical
linearization” around x of the original variational problem (1). Up to some technical details,
this is in essence the conical linearization technique employed in [3].

We now fix the basic terminology that is employed in this paper. First of all we introduce
the set of all critical values of the variational problem (1), that is to say,

σ(A, K ) = {〈x, Ax〉 : x is a critical vector of (1)}.
The above set is simply called the K - spectrum of A because

λ ∈ σ(A, K ) ⇐⇒
{

there is a non-zero vector x ∈ R
n such that

x ∈ K , Ax − λx ∈ K +, 〈x, Ax − λx〉 = 0.
(7)

Sometimes one refers to σ(A, K ) as the set of K - eigenvalues of the matrix A. In the same
vein, a non-zero vector x as in (7) is said to be a K - eigenvector of A. The later terminology
speaks by itself and doesn’t need further justification. Just to make everything clear, we point
out that

x is a critical vector of (1) ⇐⇒ x is a normalized K - eigenvector of A.

The right-hand side of the equivalence (7) is used in [15] as the definition of the K - spectrum
of an arbitrary matrix, be it symmetric or not. In this work, however, we stick to the symmetric
case.

The K - spectrum of a symmetric matrix A is to be distinguished from the set of all local
minimal values of (1), that is to say,

σlocmin(A, K ) = {〈x, Ax〉 : x is a local solution to (1)}.
We are specially interested in the later set because we are concerned with the computation of
local minima and not just with the identification of critical vectors. Recall that we are solving
a minimization problem after all. In general one has the inclusion

σlocmin(A, K ) ⊂ σ(A, K )

and both sets contain the global minimal value

λmin(A, K ) = min
u∈K∩Sn

〈u, Au〉

of the variational problem (1). Moreover,

λmin(A, K ) = min{λ : λ ∈ σlocmin(A, K )} = min{λ : λ ∈ σ(A, K )}. (8)

1.3 Dualization

Recall that a symmetric matrix E is said to be K - copositive if 〈u, Eu〉 ≥ 0 for all u ∈ K . In
an n-dimensional context, the set of all such matrices is given by

PK = {E ∈ Sym(n) : λmin(E, K ) ≥ 0}.
The set PK turns out to be a closed convex set in the linear space Sym(n).

The minimal value of the variational problem (1) admits the min-max formulation

λmin(A, K ) = inf
u∈K

sup
λ∈R

L(u,λ)︷ ︸︸ ︷
〈u, Au〉 − λ(〈u, u〉 − 1) . (9)
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By exchanging the order of the infimum and the supremum one gets

β(A, K ) = sup
λ∈R

inf
u∈K

L(u, λ),

which after a short simplification yields

β(A, K ) = sup{λ ∈ R : A − λI ∈ PK }. (10)

One refers to (10) as the dual problem associated to (1).
Although the Lagrangean function L : R

n × R → R introduced in (9) fails to be convex
with respect to the minimization variable u, there is no duality gap between the primal prob-
lem (1) and its dual (10). This and other facts are properly recorded in the next proposition.

Proposition 1 Let A ∈ Sym(n) and K ∈ �(Rn). Then,

(a) The function L : R
n × R → R introduced in (9) admits saddle points over K × R.

(b) There is no duality gap between (1) and (10), i.e., λmin(A, K ) = β(A, K ).
(c) The dual problem (10) has exactly one global solution, namely λ = λmin(A, K ).

Proof We cannot use standard minimax theorems relying on convexity assumptions. The
fundamental ingredient of our proof is positive homogeneity. The dual problem associated
to (1) concerns the maximization of a profit function 	 : R → R ∪ {−∞} given by

	(λ) = inf
u∈K

L(u, λ) = λ+ inf
u∈K

〈u, [A − λI ]u〉 =
{
λ if A − λI ∈ PK ,

−∞ otherwise.

This explains why we are getting the formulation (10) for the number β(A, K ). The function
	 can be rewritten in an entirely different manner, namely

	(λ) = λ+ inf
ρ≥0

�λ(ρ)

with

�λ(ρ) = inf
u∈K
‖u‖=ρ

[〈u, Au〉 − λ〈u, u〉] = ρ2 [λmin(A, K )− λ] .

Carrying out the minimization with respect to the auxiliary variable ρ ≥ 0 one arrives at

	(λ) =
{
λ if λ ≤ λmin(A, K ),
−∞ otherwise .

The later characterization of 	 shows that the dual problem (10) has λ = λmin(A, K ) as
unique global solution, in which caseβ(A, K ) = λmin(A, K ). Finally, if x is a global solution
to (1), then the pair (x, λmin(A, K )) is a saddle point of L over K × R. ��

Remark 1 A key observation concerning the minimization problem (1) is that the cost func-
tion qA is positively homogeneous (of degree 2) and the constraint function ‖ · ‖ is non-
negative and positively homogeneous (of degree 1). Proposition 1 could be obtained from a
more general duality result on minimization problems with positively homogeneous data.
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2 Local minima versus global minima

Needless to say, the main source of difficulties in the analysis of (1) is the “non-negativity
constraint” induced by the cone K . The complexity of our minimization problem depends
essentially on the structure of K .

Let us start with some words concerning the classical case of a subspace-constrained
quadratic minimization problem. If

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

are the eigenvalues of A ∈ Sym(n) arranged in non-decreasing order, then Fischer’s famous
max-min principle asserts that

λi (A) = max
K∈V(Rn)

dimK=n−i+1

λmin(A, K ) ∀i ∈ {1, 2, . . . , n}

with V(Rn) denoting the set of all linear subspaces of R
n . Notice that Fisher’s principle

involves the minimal value of the variational problem (1). The following proposition is prob-
ably known. We give its proof for the sake of completeness and for paving the way to the
discussion of the general cone-constrained framework.

Proposition 2 Let A ∈ Sym(n) and K be a d-dimensional linear subspace of R
n. Then,

(a) Any local solution x ∈ R
n to (1) is in fact a global solution to (1), i.e., x ∈ K ∩ Sn

and 〈x, Ax〉 = λmin(A, K ).
(b) σlocmin(A, K ) contains λmin(A, K ) as unique element.
(c) λmin(A, K ) is equal to the smallest eigenvalue of the symmetric matrix V T AV , where

V stands for any matrix of size n ×d whose columns form an orthonormal basis of K .

Proof If K is a linear subspace, then (2) becomes Ax − 〈x, Ax〉x ∈ K ⊥ with K ⊥ denoting
the orthogonal of K . Linearity of K also implies that R+(K − x) = K . One gets CK (x) = K
and the second-order optimality condition (3) becomes

〈h, Ah〉 ≥ 〈x, Ax〉 ∀h ∈ K ∩ Sn .

In other words, x is a global solution to (1). Part (b) is a direct consequence of (a). Finally,
consider a representation of K in the form K = {V z : z ∈ R

d} with V as indicated in
(c). From [15,Example 2.2] one knows that σ(A, K ) = spec(V T AV ), where the notation
spec(E) refers to the usual spectrum of a symmetric matrix E . For completing the proof of
the proposition it suffices to recall the general formula (8). ��

The analysis of (1) is more interesting when K is not a linear subspace. In the truly conic
case it is not possible to get rid of the non-negativity constraint x ∈ K and transform (1) into
an equivalent unconstrained eigenvalue problem. The situation is more involved as one may
expect.

A striking feature of cone-constrained eigenvalue problems is that a local solution doesn’t
need to be a global one. It is natural then to address the following question: which region of
K contains a local solution that is not a global one? The next proposition suggests that our
attention is not to be directed toward the relative interior of the cone. A discrepancy between
local and global optimality can occur only on the relative boundary of the cone.

In what follows one uses the notation ri(K ) to indicate the relative interior of K . The
linear space spanned by K is denoted by spanK .
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Proposition 3 Let A ∈ Sym(n) and K ∈ �(Rn). Suppose that x is a local solution to (1)
and that x belongs to ri(K ). In such a case, x is a global solution to (1).

Proof In view of Theorem 1 and the hypotheses made on x , one has

Ax − 〈x, Ax〉x ∈ [spanK ]⊥. (11)

That x lies in the relative interior of K amounts to saying that R+(K − x) = spanK . The
latter equality and (11) yield CK (x) = spanK . The second-order optimality condition (3)
takes the form

〈h, Ah〉 ≥ 〈x, Ax〉 ∀h ∈ spanK , ‖h‖ = 1, (12)

proving in this way that x is a global solution to (1). ��
Remark 2 Be aware that a local solution x as in Proposition 3 is not necessarily an eigen-
vector of A. What is true, however, is that x is an eigenvector of the symmetric matrix
AK = PK APK , where PK : R

n → R
n stands for the orthogonal projection onto spanK .

The corresponding eigenvalue is 〈x, AK x〉 = 〈x, Ax〉.
Remark 3 The condition (12) proves not only that x is a global solution to (1), but a bit more
than that. One deduces that x is also a global solution to the subspace-constrained eigenvalue
problem

λmin(A, spanK ) = min
u∈spanK

‖u‖=1

〈u, Au〉.

The later problem falls within the framework of Proposition 2. If spanK is a d-dimensional
subspace of R

n , then

λmin(A, K ) = 〈x, Ax〉 = λmin(A, spanK ) = λ1(V
T
K AVK ),

where VK stands for any matrix of size n × d whose columns form an orthonormal basis of
spanK , and λ1(E) indicates the smallest eigenvalue of a symmetric matrix E .

3 How many local minimal values?

In this section we are interested in estimating the cardinality of σlocmin(A, K ) under the
assumption that K is a polyhedral convex cone in R

n . That a closed convex cone K is poly-
hedral simply means that it can be represented as intersection of finitely many half-spaces.
This is equivalent to saying that K admits the representation

K = cone{g1, . . . , g p} =
{ p∑

i=1

αi g
i : α ∈ R

p
+

}

for some finite collection {g1, . . . , g p} of unit vectors in R
n . There is no loss of generality

in assuming that none of the gi is a positive linear combination of the others. One usually
refers to these vectors as the generators of the cone.

The polyhedrality hypothesis implies that σ(A, K ) is a finite set (cf. [14]), and so is there-
fore the smaller set σlocmin(A, K ). It is worthwhile noticing that the lack of polyhedrality
may lead to a K -spectrum that is not even countable (cf. [7]).
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To proceed further with the presentation we need to recall some basic facts from the theory
of faces. By a face of a closed convex cone K one understands a convex cone F , subset of
K , such that

u, v ∈ K and u + v ∈ F �⇒ u, v ∈ F.

A face is necessarily closed. The trivial set {0} is a face of K if and only if K is pointed. A
face F of K is said to be exposed1 if it expressible in the form

F = K ∩ y⊥ = {u ∈ K : 〈y, u〉 = 0}
for a suitable vector y ∈ K +. The dimension of a face F , denoted by dimF , is simply the
dimension of the linear space spanned by F . In the sequel one uses the notation

F(K ) ≡ set of all faces of K ,

F∗(K ) ≡ set of all faces of K excluding the trivial (or zero) face,

Fd(K ) ≡ set of all d - dimensional faces of K .

For each non-zero vector x in K there is a unique F ∈ F∗(K ) such that x ∈ ri(F). Such
F is called the face of K associated to x . Sometimes it is convenient to express the condition
x ∈ ri(F) by saying that F produces the vector x . Additional material from the theory of
faces will be incorporated when the need arises.

Theorem 2 Let A ∈ Sym(n) and K ∈ �(Rn). Let x be a local solution to (1) and F be the
associated face. Then,

〈x, Ax〉 = λmin(A, spanF) = λ1(V
T
F AVF ) (13)

with VF standing for any matrix of size n ×dimF whose columns form an orthonormal basis
of spanF.

Proof Since x is a local solution to (1) and x belongs to F , it follows that x is a local solution
to

minimize 〈u, Au〉
u ∈ F ∩ Sn .

If one views the quadratic form qA as a function on the linear space spanned by F , then
we are back to context of Proposition 3, except that now one works with the closed convex
cone F and not with K . Since x belongs to ri(F), it follows that x is a global solution to the
subspace-constrained eigenvalue problem

λmin(A, spanF) = min
u∈spanF

‖u‖=1

〈u, Au〉. (14)

This clearly yields the equalities stated in (13). ��
Several consequences can be derived from Theorem 2. The next corollary shows that each

face of K produces at most one local minimal value of (1), regardless of the dimension of
that face.

Corollary 1 Let A ∈ Sym(n) and K ∈ �(Rn). If x and x ′ are two local solutions to (1)
having the same associated face, then 〈x, Ax〉 = 〈x ′, Ax ′〉.
1 A non-polyhedral convex cone may well have a face that is not exposed, but this cannot occur in a polyhedral
setting. Another advantage of working with polyhedral convex cones is that they have finitely many faces.
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Proof Let F be the face shared by x and x ′. Theorem 2 indicates that the local minimal
values 〈x, Ax〉 and 〈x ′, Ax ′〉 are both equal to λmin(A, spanF). ��

A matrix of the form V T
F AVF is called a truncation of A relative to the face F . Notice that

A has many truncations relative to a prescribed face F because there are many orthonormal
basis for spanF . However, all the truncations of A relative to F have the same spectrum and
therefore λ1(V T

F AVF ) is defined unambiguously.
We mention in passing that the eigenvalues of A and those of V T

F AVF satisfy the Poincaré
interlacing property

λi (A) ≤ λi (V
T
F AVF ) ≤ λn−d+i (A) ∀i ∈ {1, 2, . . . , d} (15)

with d being the dimension of F . One gets in this way a localization result for the local
minimal values associated to faces with prescribed dimension.

Corollary 2 Let A ∈ Sym(n) and K ∈ �(Rn). Any local minimal value of (1) produced by
a d-dimensional face of K lies in the interval [λ1(A), λn−d+1(A)].
Proof Combine Theorem 2 and the interlacing property (15) for i = 1. ��

An improved version of Corollary 2 is stated in the next proposition. Such improved ver-
sion is helpful when the cone K is not full dimensional in R

n , or when we have already
computed the eigenvalues

λ1(V
T
F AVF ) ≤ λ2(V

T
F AVF ) ≤ · · · ≤ λk(V

T
F AVF )

of a truncation of A relative to a given k- dimensional face F of K . One can take F as the cone
K itself (in which case k = dimK ), but the choice of another face of K is also acceptable.

Proposition 4 Let A ∈ Sym(n) and K ∈ �(Rn). Consider an integer k ∈ {1, 2, . . . , dimK }
and a k-dimensional face F of K . Then, any local minimal value of (1) produced by a
d-dimensional subface of F lies in the interval [λ1(V T

F AVF ), λk−d+1(V T
F AVF )].

Proof Let λ ∈ R be a local minimal value associated to a d- dimensional subface G of F .
By Theorem 2 we know that λ is representable in the form

λ = λ1(V
T
G AVG) (16)

with VG denoting any matrix of size n × d whose columns form an orthonormal basis of
spanG. Notice that the span of G is contained in the span of F because we are assum-
ing that G is a subface of F . We can expand the matrix VG with r = k − d additional
columns {w1, . . . , wr } ⊂ R

n in such a way that the columns of the expanded matrix
V = [VG , w1, . . . , wr ] form an orthonormal basis of spanF . The eigenvalues of the d × d
symmetric matrix V T

G AVG and those of the larger k × k symmetric matrix V T AV are inter-
laced according to Poincaré’s inequality

λi (V
T AV ) ≤ λi (V

T
G AVG) ≤ λk−d+i (V

T AV ) ∀i ∈ {1, 2, . . . , d}.
On the other hand, both truncations V T AV and V T

F AVF of A relative to F have the same
spectrum. One gets in particular

λ1(V
T
F AVF ) ≤ λ1(V

T
G AVG) ≤ λk−d+1(V

T
F AVF ). (17)

In view of (16), the proof of the proposition is complete. ��
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Remark 4 The localization result stated in Proposition 4 becomes sharper when the differ-
ence k−d gets smaller. For instance, if d is just one dimension less than k, then the consecutive
eigenvalues λ1(V T

F AVF ) and λ2(V T
F AVF ) serve to bound all the local minimal values of

(1) associated to the d- dimensional subfaces of F . Another interesting remark is this: if the
eigenvalue λ1(V T

F AVF ) has algebraic multiplicity greater than or equal to k − d + 1, then
both sides of the sandwich (17) coincide, and therefore the d- dimensional subfaces of F can
produce together at most one local minimal value of (1).

Enough has been said about local minimal values associated to faces of prescribed dimen-
sion. The next proposition is a containment result as well as a cardinality result for the set
σlocmin(A, K ). The first part doesn’t requires polyhedrality, the second part, does.

Proposition 5 Let A ∈ Sym(n) and K ∈ �(Rn). Then,

σlocmin(A, K ) ⊂ {λmin(A, spanF) : F ∈ F∗(K )}, (18)

i.e., each element of σlocmin(A, K ) can be represented as the smallest eigenvalue of a trun-
cation of A relative to some face of K . Furthermore, if K is polyhedral, then the cardinality
of σlocmin(A, K ) cannot exceed the number of non-trivial faces of K :

card[σlocmin(A, K )] ≤
dimK∑
d=1

fK (d) (19)

with fK (d) = card[Fd(K )] standing for the number of d-dimensional faces of K .

Proof Everything is an easy consequence of Theorem 2. We shall prove later a more general
version of this proposition (cf. Theorem 3). ��

The upper bound (19) doesn’t apply to the full K - spectrum of A. There are cases in which
the general inclusion

σ(A, K ) ⊂
⋃

F∈F∗(K )
σ (A, spanF) (20)

occurs as an equality and therefore the only thing one can say about the cardinality of σ(A, K )
when K is polyhedral is that

card[σ(A, K )] ≤
dimK∑
d=1

d fK (d). (21)

By contrast, (20) and (21) hold for any matrix A, be it symmetric or not (cf. [15,Theorem 3.4]).
The next corollary shows that the bound (19) is sharp at least when closed half-spaces are

concerned. Of course, the bound (19) is also sharp for linear subspaces and for half-lines.

Corollary 3 Let K be a closed half-space in R
n. Then,

(a) For any A ∈ Sym(n), the set σlocmin(A, K ) has at most two elements.
(b) There exists a matrix A ∈ Sym(n) such that card[σlocmin(A, K )] = 2.

Proof A closed half-space in R
n is a convex cone of the form

K = {u ∈ R
n : 〈w, u〉 ≥ 0} (22)

with w ∈ Sn . Note that K has only two faces: the cone K itself and the hyperplane w⊥.
Hence, the only possible local minimal values of (1) are λ1(A) and λmin(A, w⊥). This takes
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care of part (a). For constructing a matrix A as in (b), consider first the particular half-space
K̂ = {u ∈ R

2 : u1 ≥ 0}. We claim that it is possible to find two different real numbers
µ1, µ2 and a matrix

Â =
[

a b
b c

]

such that

σlocmin( Â, K̂ ) = {µ1, µ2}. (23)

For proving this claim we convert the minimization problem

minimize a u2
1 + 2b u1u2 + c u2

2

u2
1 + u2

2 = 1

u1 ≥ 0

into that of minimizing the univariate function

t ∈ [−1, 1] �→ ϕ(t) = a (1 − t2)+ 2b t
√

1 − t2 + c t2. (24)

If one takes, for instance, a = 1, b = 1, and c = 0, then (24) attains a local minimum at
t = 1, as well as a local minimum at

t̂ = −
√

5 + √
5

10
≈ −0.8507.

So, σlocmin( Â, K̂ ) is formed byµ1 = ϕ(t̂) = (1−√
5)/2 ≈ −0.618 and byµ2 = ϕ(1) = 0.

This completes the proof of (23). Parenthetically, note that µ1 < µ2 in consistency with
Proposition 3. Indeed, the local solution x̂ = (

√
1 − t̂2, t̂) lies in ri(K̂ ) and therefore it must

be a global solution. Consider now the general half-space (22). Let Q be an n × n ortho-
normal matrix such that Qw = e1 = (1, 0, 0, . . . , 0)T . With this choice of Q one gets
Q(K ) = K̂ × R

n−2. If one defines

A = QT
[

Â 0
0 0

]
Q,

then a matter of computation shows that

σlocmin(A, K ) = σlocmin

([
Â 0
0 0

]
, K̂ × R

n−2
)

= σlocmin( Â, K̂ ).

This and (23) complete the proof of the corollary. ��

4 The two-out-of-three rule

For some special classes of convex cones there is a bit of room for improvement in the upper
bound (19). However, a complete revision of our counting strategy is needed in order to
quantify a possible gain. While dealing with general polyhedral convex cones it is rather rare
to have every face producing a different local minimal value of (1). In practice, plenty of
faces are “idles” and don’t contribute to the formation of the set σlocmin(A, K ).
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Next we develop a practical rule for removing idle faces. The lemma below gives us a
feeling for what happens with (1) when one considers a cone generated by two vectors. Such
a simple situation will give us a clue on how to treat more involved cases.

Lemma 1 Let A ∈ Sym(n). Consider a convex cone

K = cone{g1, g2} = {α1g1 + α2g2 : α1, α2 ≥ 0} (25)

generated by two linearly independent unit vectors g1, g2 in R
n. Then, σlocmin(A, K ) has at

most two elements.

Proof Since g1, g2 are assumed to be linearly independent, the convex cone (25) has a
span which is two-dimensional. We construct an orthonormal basis {v1, v2} for span
K = span{g1, g2} by using the Gram-Schmidt orthogonalization procedure: if θ ∈]0, π[
denotes the angle formed by g1 and g2, then we write

v1 = g1 and v2 = −
(

cos θ

sin θ

)
g1 +

(
1

sin θ

)
g2.

Since K ∩ Sn = {(cos t)v1 + (sin t)v2 : t ∈ [0, θ ]}, one can write (1) as a one-dimensional
minimization problem, namely

minimize

�(t)︷ ︸︸ ︷
a cos2 t + 2b sin t cos t + c sin2 t (26)

t ∈ [0, θ ] .
We may suppose that the Gramian matrix[

a b
b c

]
=

[〈v1, Av1〉 〈v1, Av2〉
〈v2, Av1〉 〈v2, Av2〉

]

is not equal to zero, otherwise the quadratic form qA vanishes everywhere on K . We leave
aside also the configuration b = 0, a = c because in that case qA would be constant over K .
Counting the number of local minimal values of (26) is not a difficult task. The boundary
points t = 0 and t = θ may be local minima or not. This will depend on the signs of the
derivatives

�′(0) = 2b,

�′(θ) = (c − a) sin(2θ)+ 2b cos(2θ).

As candidate for local minimality we must consider also any point t0 ∈]0, θ [ such that
�′(t0) = 0. A quick analysis of the behavior of �′ over [0, θ ] shows that (26) admits two
local minimal values at the most. One concludes in this way that σlocmin(A, K ) has one or
two elements. ��

The proof technique of Lemma 1 can be exploited a bit further. Among other things, we
have proved that:

(i) If b > 0, then 〈g1, Ag1〉 ∈ σlocmin(A, K ).
(ii) If �′(θ) < 0, then 〈g2, Ag2〉 ∈ σlocmin(A, K ).

(iii) If b > 0 and �′(θ) < 0, then no local solution to (1) is to be found in ri(K ).
(iv) If g1 and x ∈ ri(K ) are local solutions to (1) yielding different local minimal values,

then g1 and x form an angle greater than π/2 and 〈x, Ax〉 < 〈g1, Ag1〉.
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Fig. 1 Shape of � when a = −1, b = 2, c = 3

The statement (iv) is quite subtle and requires perhaps an explanation. Let g1 and x ∈ ri(K )
be local solutions to (1) with 〈g1, Ag1〉 �= 〈x, Ax〉. The function � increases over the interval
[0, t̂], where t̂ is the smallest positive real such that �′(t̂) = 0, i.e.,

t̂ = 1

2
arctan

(
2b

a − c

)
.

The function � starts then to decrease until one reaches a second point t̃ at which �′ vanishes.
This point t̃ is a local minimum of � and x is in fact given by x = (cos t̃)v1 + (sin t̃)v2.

A simple inspection at the function �′ shows that t̃ = t̂ + (π/2), proving in this way that the
angle between g1 and x is greater than π/2. By the way, since x is assumed to be in ri(K ),
we must have t̃ < θ . In other words, the situation described in (iv) can only occur if the
generators g1, g2 form an angle greater than π/2. Finally, to see that 〈x, Ax〉 < 〈g1, Ag1〉
one just needs to compare the values �(t̂) and �(0).

Figures 1 and 2 illustrate some of the possible shapes of � depending on the parameters
a, b, c. As angle between the generators we are taking θ = 2π/3. In Fig. 1 the generators
g1, g2 are producing two different local minimal values of (1). Hence, no local solution is to
be found in the relative interior of the cone. In Fig. 2 only the generator g1 produces a local
minimal value. A second local minimal value is produced by a local solution x lying in the
relative interior of the cone. As one can see from the graph of �, the second local minimal
value is in fact the global minimum of (1). This observation is consistent with Proposition 3.
One can also see that the angle between the local solution g1 and the global solution x ∈ ri(K )
is greater than π/2. As explained some lines above, this phenomenon is not accidental.

The three non-trivial faces of the convex cone (25) can produce together at most two local
minimal values of (1). This is what we call the “two-out-of-three rule”. At least one of the
three non-trivial faces of (25) is idle and this suggests that the upper bound (19) admits some
sharpening. A more general formulation of the “two-out-of-three rule” reads as follows:

Proposition 6 Let A ∈ Sym(n). Consider a convex cone K = cone{g1, . . . , g p} generated
by a collection {g1, . . . , g p} of p unit vectors in R

n. Let i, j ∈ {1, . . . , p} be such that
Ki, j = cone{gi , g j } is a two-dimensional face of K . Under these assumptions one has:
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Fig. 2 Shape of � when a = 8, b = 2, c = 1

(a) The three non-trivial faces of Ki, j can produce together at most two local minimal
values of (1).

(b) In case gi and x ∈ ri(Ki, j ) are local solutions to (1) producing different local minimal
values, then gi and x form an angle greater than π/2 and 〈x, Ax〉 < 〈gi , Agi 〉.

Proof For proving (a), suppose that gi , g j , and some x ∈ ri(Ki, j ), are local solutions
of (1). In particular, gi , g j , x are local solutions of the variational problem which consists
in minimizing the quadratic form qA on the smaller set Ki, j ∩ Sn . We are then back to the
framework of Lemma 1. Part (b) has been duely explained before. Of course, the situation
described in (b) could occur only if gi , g j form an angle greater than π/2. ��

As application of Proposition 6 consider a polyhedral cone K as in Fig. 3. Such cone is
generated by p vectors in R

3. As one can see, K has p one-dimensional faces, p two-dimen-
sional faces, and 1 three-dimensional face, that is to say, 2p+1 non-trivial faces in all. Hence,
the general upper bound (19) yields the estimate

card[σlocmin(A, K )] ≤ 2p + 1.

On the other hand, if one applies the two-out-of-three rule to each one of the consecutive
two-dimensional faces

cone{g1, g2}, cone{g2, g3}, . . . , cone{g p−1, g p}, cone{g p, g1},
then one ends up with the better estimate

card[σlocmin(A, K )] ≤ 2p + 1 − �p/2� , (27)

where �r� stands for the upper integer part of r .
A suitable two-out-of-three rule can be stated for non-polyhedral convex cones as well.

In fact, it is not necessary to refer to the faces and to the generators of the cone.

Proposition 7 Let A ∈ Sym(n) and K ∈ �(Rn). Suppose that x1, x2, x3 are three different
local solutions to (1) such that one of them is a positive linear combination of the others.
Then, the three values 〈x1, Ax1〉, 〈x2, Ax2〉, 〈x3, Ax3〉 are the same.
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Fig. 3 A polyhedral cone
generated by p vectors. No
restrictions are imposed on the
angles formed by the generatrors

Proof Suppose, for instance, that x3 is a positive linear combination of x1 and x2. Since these
three unit vectors are assumed to be different, it follows that x1, x2 are linearly independent
and

x3 ∈ ri
(
cone{x1, x2}) .

For completing the proof of the proposition we apply Lemma 1 to the subcone K1,2 =
cone{x1, x2}. Since the vectors x1, x2, x3 are local minima of the quadratic function qA on
K1,2 ∩ Sn and they are placed in different faces of K1,2, it follows that qA must be constant
over the arc K1,2 ∩ Sn . ��

We state below another result in the same spirit but not comparable to Proposition 7.

Proposition 8 Let A ∈ Sym(n) and K ∈ �(Rn). If {x(t) : t ∈ [0, 1]} is an absolutely
continuous curve formed by critical vectors of (1), then

t ∈ [0, 1] �→ λ(t) = 〈x(t), Ax(t)〉 (28)

is a constant function.

Proof We adapt a proof technique used for the analysis of critical angles in convex cones.
A minor adjustment of [7,Proposition 2] is all what is needed. ��

What Proposition 8 says is that two critical vectors of (1) yielding different critical values
cannot be joined by an absolutely continuous curve formed by critical vectors of (1). It is not
clear whether (28) remains constant if the curve under consideration is just continuous.

5 Pre-activity as relaxation of local minimality

The set on the right-hand side of (18) is obtained by ranging F over the full collection of
non-trivial faces of K . The upper bound (19) is uniform in the sense that it applies to any
matrix A ∈ Sym(n). This corresponds somehow to a worst case scenario. We next describe
a more sophisticated method of selecting faces. This time we take into account not only the
convex cone K but also the matrix A ∈ Sym(n).
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Definition 1 Let A ∈ Sym(n) and K ∈ �(Rn). A face F ∈ F∗(K ) is said to be pre-active
for the variational problem (1) if there are a matrix VF of size n × dimF and a unit vector
zF ∈ R

dimF such that:

(i) the columns of VF form an orthonormal basis of spanF,
(ii) zF is an eigenvector of V T

F AVF associated to the smallest eigenvalue λ1(V T
F AVF ),

(iii) VF zF ∈ ri(F).

The collection of all pre-active faces for (1) is denoted by F∗(A, K ). A face F ∈ F∗(K ) is
said to be active (respectively, critical) for the variational problem (1) if it is associated to a
local solution (respectively, critical vector) of (1).

Although it is an abuse of language, we say sometimes that a face is pre-active (or active,
or critical) without refering explicitly to the variational problem (1). The motivation behind
Definition 1 should be clear by now. In fact, the concept of pre-activity is specially tailored
for obtaining the following extension of Proposition 5.

Theorem 3 Let A ∈ Sym(n) and K ∈ �(Rn). Then,

(a) Every active face F ∈ F∗(K ) for (1) is pre-active for (1).
(b) One has the general inclusion

σlocmin(A, K ) ⊂ {λmin(A, spanF) : F ∈ F∗(A, K )}, (29)

i.e., each element of σlocmin(A, K ) can be represented as the smallest eigenvalue of
a truncation of A relative to some pre-active face of K .

(c) If K happens to be polyhedral, then

λmin(A, K ) = min
F∈F∗(A,K )

λ1(V
T
F AVF ) (30)

and the cardinality of σlocmin(A, K ) cannot exceed the number of pre-active faces:

card[σlocmin(A, K )] ≤ card[F∗(A, K )]. (31)

Proof As in Proposition 5, this is again a matter of exploiting Theorem 2. Let us be more
explicit this time. The proof of (b) runs as follows. Let λ ∈ σlocmin(A, K ). Hence, there is a
local solution x to (1) such that λ = 〈x, Ax〉. Let F be the face associated to x . By definition,
F is the unique face of K such that x ∈ ri(F). One can always construct a matrix VF as in
Definition 1(i). By (13) one knows that

λ = λmin(A, spanF) = λ1(V
T
F AVF ).

We also know that x is a global solution to the subspace-constrained eigenvalue problem
(14). Since the linear map z �→ VF z is a bijection between R

dimF and spanF , there is a
(unique) vector zF ∈ R

dimF such that x = VF zF . Such vector zF depends of course on
x . It is clear that zF has unit length and satisfies the properties (ii) and (iii) in Definition 1.
This shows that F ∈ F∗(A, K ) and completes the proof of (b). The proof of (a) is similar.
One starts with an active face F and then one takes any local solution x to (1) lying in the
relative interior of F . As before, one concludes that F is pre-active. Suppose now that K is
polyhedral. Formula (31) and the inequality

λmin(A, K ) ≥ min
F∈F∗(A,K )

λ1(V
T
F AVF ) (32)
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are consequences of (b). It remains to check that (32) occurs as an equality. Consider any
F ∈ F∗(A, K ) and construct

xF = VF zF (33)

with VF and zF as in Definition 1. Observe that xF is feasible for (1) and

λmin(A, K ) ≤ 〈xF , AxF 〉 = 〈zF , V T
F AVF zF 〉 = λ1(V

T
F AVF ).

Since F ∈ F∗(A, K ) was chosen arbitrarily, one gets

λmin(A, K ) ≤ min
F∈F∗(A,K )

λ1(V
T
F AVF ),

completing in this way the proof of (c). ��
If K is polyhedral, then one can write

λmin(A, K ) = min
F∈F∗(K )

λmin(A, F) = min
F∈F∗(A,K )

λmin(A, F).

These representation formulas are not helpful in practice because computing λmin(A, F) is
as difficult as computing the original expression λmin(A, K ). On the other hand, it is also
possible to write

λmin(A, K ) = min
F∈F∗(K )

F active

λ1(V
T
F AVF ),

but this formula is not helpful either. Although evaluating λ1(V T
F AVF ) is a matter of classical

linear algebra, identifying the active faces of K is a tough job. The general idea supporting
the use of Theorem 3 is that the task of identifying the pre-active faces of K is much easier.

Example 1 By way of illustration we show how to identify the pre-active faces of the Pareto
cone K = R

n+. The Pareto cone, also referred to as the non-negative orthant, is by far the most
popular of all ordering cones in R

n . It is not difficult to check that, for any A ∈ Sym(n), one has

F ∈ F∗(A,Rn+) ⇐⇒
{

the smallest eigenvalue of V T
F AVF admits

an eigenvector with positive components.
(34)

The right-hand side of (34) is a test that can be treated with the standard tools of Perron-
Frobenius eigenvalue analysis [2].

For the sake of convenience we refer to (33) as the “transfer equation” and to xF as being
a pre-active vector for the variational problem (1). If one adopts this terminology, then a pre-
active face corresponds precisely to a face associated to a pre-active vector. This is consistent
with other expressions like active face, critical face, etc.

A pre-active vector can be defined in a more direct manner without passing through the
transfer equation. Also, a pre-active face can be “detected” without constructing explic-
itly the matrix VF and the eigenvector zF . The following proposition gives an alternative
characterization of pre-activity. The leading role is now played by

AF = PF APF ,

where the linear map PF : R
n → R

n stands for the orthogonal projection onto spanF .

Proposition 9 Let A ∈ Sym(n) and K ∈ �(Rn). For a face F ∈ F∗(K ) the following
conditions are equivalent:
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(a) F is a pre-active for (1).
(b) F admits in its relative interior a unit vector x such that AF x = λmin(A, spanF)x .

Proof Let F be pre-active. Construct VF and zF as in Definition 1. The linear map PF clearly
admits VF V T

F as matrix representation. Left multiplication by VF on both sides of

V T
F AVF zF = λ1(V

T
F AVF )zF

leads to the new equality

PF AxF = λmin(A, spanF)xF ,

where xF is given by the transfer equation. Since xF belongs to the relative interior of F ,
it follows that PF xF = xF and therefore AF xF = λmin(A, spanF)xF . Conversely, suppose
that AF x = λmin(A, spanF)x holds for some unit vector x ∈ ri(F). If VF is defined as usual,
one gets

VF V T
F Ax = λmin(A, spanF)x .

One can write x = VF z for a suitable unit vector z ∈ R
dimF . This leads to

VF

[
V T

F AVF z − λ1(V
T
F AVF )z

]
= 0.

The vector between square brackets must be zero and therefore z is an eigenvector associated
to λ1(V T

F AVF ). This proves that F is pre-active. ��

One-dimensional faces are always pre-active as one can see from Proposition 9(b). The
condition (b) in Proposition 9 seems a shorter and simpler way of introducing the concept of
pre-activity. However, the simplicity of this formulation is only apparent. Most of the heavy
work is hidden in the computation of the matrix AF . Besides, the dimension of V T

F AVF is
smaller than the dimension of AF and this fact counts when it comes to compute eigenvalues
and eigenvectors.

The next example serves to illustrate the usefulness of the formula (30) stated in
Theorem 3. We write down all the details for the sake of pedagogy.

Example 2 Consider the V - shaped cantilever K = {x ∈ R
3 : x3 ≥ |x2|} and the symmetric

matrix

A =
⎡
⎣ 3 −2 1

−2 1 2
1 2 3

⎤
⎦ .

The cantilever admits the bottom line F1 = R (1, 0, 0) as one-dimensional face, the sets

F2 = {x ∈ R
3 : x2 ≥ 0, x2 − x3 = 0}

F3 = {x ∈ R
3 : x2 ≤ 0, x2 + x3 = 0}

as two-dimensional faces, and F4 = K as three-dimensional face. One has

VF1 =
⎡
⎣1

0
0

⎤
⎦ , VF2 =

⎡
⎣1 0

0
√

2/2
0

√
2/2

⎤
⎦ , VF3 =

⎡
⎣1 0

0 −√
2/2

0
√

2/2

⎤
⎦ , VF4 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .
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These matrices depend only on K . A matter of computation shows that

λ1(V T
F1

AVF1) = 3, zF1 = 1,
λ1(V T

F2
AVF2) = 2.6340, zF2 = (0.8881, 0.4597)T ,

λ1(V T
F3

AVF3) = −1.0981, zF3 = (−0.4597, 0.8881)T

λ1(V T
F4

AVF4) = −1.3723, zF4 = (−0.4544,−0.7662, 0.4544)T .

The pre-active faces are F1, F2 and F3. By using formula (30) one gets λmin(A, K ) =
−1.0981. This global minimal value is achieved with the global solution xF3 = VF3 zF3 =
(−0.4597,−0.6280, 0.6280).

6 Specific results for infra-dual cones

One can derive various refinements for the results established in Sect. 3, but this requires
asking more structure to the cone K . An interesting situation occurs when K is infra-dual in
the sense that it is contained in K +. Such requirement can be formulated in the simpler form

〈u, v〉 ≥ 0 ∀u, v ∈ K .

Geometrically speaking, the infra-duality assumption amounts to saying that the maximal
angle

θmax(K ) = max
u,v∈K∩Sn

arccos〈u, v〉

of K is less than or equal to π/2. None of the results presented in this section is true for a
convex cone whose maximal angle exceeds this threshold.

Proposition 10 Let A ∈ Sym(n) and K ∈ �(Rn) be infra-dual. If x̂, x ∈ R
n are non-zero

vectors such that

x̂ ∈ ri(K ) , Ax̂ = λ̂x̂, (35)

x ∈ K , Ax = λx,

then λ̂ = λ.

The above proposition is a known result pertaining to the realm of classical eigenvalue anal-
ysis. More interesting to us is the following cone-constrained version.

Lemma 2 Let A ∈ Sym(n) and K ∈ �(Rn) be infra-dual. Let λ̂ be an eigenvalue of A
admitting an eigenvector in ri(K ). Then,

λ̂ = max{λ : λ ∈ σ(A, K )}. (36)

Furthermore, any K -eigenvector of A associated to λ̂ is an eigenvector of A.

Proof The hypothesis made on λ̂ refers to the existence of a non-zero vector x̂ ∈ R
n satisfying

(35). Such λ̂ clearly belongs to σ(A, K ). Consider any other λ in the set σ(A, K ). One can
find then a non-zero vector x ∈ R

n and a vector y ∈ R
n (orthogonal to x) such that

x ∈ K , y ∈ K +, y = Ax − λx . (37)

The equalities appearing in (35) and (37) yield respectively

〈Ax̂, x〉 = λ̂〈x̂, x〉,
〈Ax, x̂〉 = 〈y, x̂〉 + λ〈x, x̂〉.
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The symmetry of A allows us to conclude that 〈y, x̂〉 = (λ̂− λ)〈x̂, x〉. Since 〈y, x̂〉 ≥ 0 and
〈x̂, x〉 > 0, it follows that λ̂ ≥ λ. This takes care of (36). The particular choice λ = λ̂ yields
〈y, x̂〉 = 0, but the later equality can occur only if y = 0 (recall that x̂ ∈ ri(K ) and y ∈ K +).
This shows that any K - eigenvector of A associated to λ̂ is in fact an eigenvector of A. ��

We mention in passing an easy consequence of Lemma 2. The proof of Corollary 4 is
immediate and therefore omitted.

Corollary 4 Let A ∈ Sym(n)and K ∈ �(Rn)be infra-dual. Suppose that the smallest eigen-
value of A admits an eigenvector in ri(K ). Then, σ(A, K ) contains λ1(A) as unique element.

A quite bothering aspect of Lemma 2 is the assumption made on λ̂. Such an eigenvalue
λ̂ may well not exist, in which case the lemma says absolutely nothing. Fortunately, this
problem can be remediated. If A doesn’t have eigenvectors in ri(K ), then we still have the
possibility of invoking the following alternative result.

Proposition 11 Let A ∈ Sym(n) and K ∈ �(Rn) be infra-dual. Let x̂ be a normalized
K -eigenvector of A and F̂ be the associated face. Then,

〈x, Ax〉 ≤ 〈x̂, Ax̂〉
for all normalized K -eigenvector x of A whose associated face is contained in F̂.

Proof We know that x̂ is an eigenvector of AF̂ lying in ri(F̂). Pick up any normalized

K - eigenvector x of A whose associated face F is contained in F̂ . The combination of
x ∈ ri(F) and F ⊂ F̂ implies that x is an F̂- eigenvector of A. In particular, x ∈ spanF̂ . In
view of the general inclusion PF̂ [F̂+] ⊂ F̂+, it follows that x is an F̂- eigenvector of AF̂ .

By applying Lemma 2 to the pair (AF̂ , F̂), one gets

〈x, Ax〉 = 〈x, AF̂ x〉 ≤ 〈x̂, AF̂ x̂〉 = 〈x̂, Ax̂〉.
��

Remark 5 Strictly speaking, in Proposition 11 one doesn’t need K to be infra-dual. It would
suffice asking the face F̂ (and hence, F) to have a maximal angle less than or equal to π/2.
This observation is quite useful when it comes to deal with a convex cone that is not infra-
dual but has a large dimensional face satisfying this angular restriction. A similar type of
remark applies to several of the remaining results of this section. It is worthwhile noticing
that Proposition 11 provides an alternative way of deriving Proposition 6(b).

Although the analysis of critical values is not main focus of this paper, we state below an
upper bound for the cardinality of σ(A, K ).

Corollary 5 Let A ∈ Sym(n). The following implications are true:

(a) If K ∈ �(Rn) is infra-dual, then each face of K produces at most one critical value
of (1).

(b) If K ∈ �(Rn) is polyhedral and infra-dual, then card[σ(A, K )] ≤ ∑dimK
d=1 fK (d).

The proof of Corollary 5 is omitted because everything follows straightforwardly from
Proposition 11. The bound given in part (b) is better than (21) but, of course, it requires the
symmetry of A and the infra-duality of K .

The ground is now ready to state one of the fundamental theorems of this paper.

123



J Glob Optim (2009) 44:1–28 21

Theorem 4 Let A ∈ Sym(n) and K ∈ �(Rn) be infra-dual. Let x, x ′ be two different local
solutions to (1). If the associated faces F, F ′ are “connected” in the sense that

F ⊂ F ′ or F ′ ⊂ F, (38)

then

(a) 〈x, Ax〉 = 〈x ′, Ax ′〉.
(b) x and x ′ are eigenvectors of AF∪F ′ . In particular, the common term in part (a) is a

multiple eigenvalue of AF∪F ′ .

Proof Suppose, for instance, that F ⊂ F ′. In view of Theorem 1, x and x ′ are normalized
K - eigenvectors of A. Proposition 11 yields then the inequality 〈x, Ax〉 ≤ 〈x ′, Ax ′〉. On the
other hand, Theorem 2 allows us to write

〈x ′, Ax ′〉 = λmin(A, spanF ′) = min
u∈spanF ′

‖u‖=1

〈u, Au〉. (39)

Since x ∈ ri(F) and F ⊂ F ′, it follows that x ∈ spanF ′. Hence, the unit vector x is feasible
for the minimization problem (39). This proves the reverse inequality 〈x ′, Ax ′〉 ≤ 〈x, Ax〉.
We now take care of part (b). We continue assuming that F ⊂ F ′ so that F ∪ F ′ = F ′. Let λ′
denote the common term in (a). Local minimality of x ′ ∈ ri(F ′) implies that AF ′ x ′ = λ′x ′.
By proceeding as in the proof of Proposition 11 one deduces that x is an F ′- eigenvector of
AF ′ . By applying the second part of Lemma 2 to the pair (AF ′ , F ′), one obtains AF ′ x = λ′x .
In short, x and x ′ are eigenvectors of AF ′ associated to the same eigenvalue. This common
eigenvalue is necessarily multiple because the unit vectors x, x ′ are not collinear. ��

Both conclusions of Theorem 4 remain true if the vector produced by the smallest face is
just critical. The local minimality hypothesis is important only for the vector produced by
the largest face.

Connectivity in the sense (38) is an essential assumption in Theorem 4. Let us elaborate
a bit further on the connectivity structure of a family of faces of a polyhedral cone.

Definition 2 Let K ∈ �(Rn) be polyhedral and F be a non-empty family of faces of K . One
says that:

(i) F is pairwise unconnected if any two different faces taken from F are not connected.
(ii) F captures K if every F ∈ F(K ) is connected to some F ′ ∈ F .

Somewhat implicit in Definition 2(i) is the fact that F is formed by at least two faces. When
F is formed by a unique face it is convenient to declare F as being pairwise unconnected.

To each polyhedral cone K one can associate a finite graph GK whose nodes are the
non-trivial faces of K . One draws an edge between two nodes if the corresponding faces are
connected. For instance,2 the graph associated to the Pareto cone R

3+ is as indicated in Fig. 4.
Recall that the chromatic number of a finite graph G is the minimum number of

colors needed to paint the nodes of G such that no two adjacent nodes have the same color
(cf. [4,Chapter 5]). In the definition below we introduce a sort of dual concept.

Definition 3 The multichromatic number of a finite graph G is the largest number of colors
that is possible to use if one paints all or some of the nodes of G in such a way that two
adjacent nodes are painted with the same color, in case both are painted.

2 We label the 2n − 1 non-trivial faces F1, F2, F3, . . . of the Pareto cone R
n+ by using the binary ordering

method [12]. This labeling procedure has many advantages. For instance, a given face Fk is d-dimensional if
and only if the number of “1” in binary representation of the integer k is equal to d.
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Fig. 4 The graph associated to
the Pareto cone R

3+

The multichromatic number of a polyhedral cone K , denoted by ν(K ), is simply the
multichromatic number of the associated graph GK . It is straightforward to see that

ν(K ) = max{card[F] : F ∈ 2F∗(K ) is pairwise unconnected} (40)

with 2S denoting the power set of S. The above integer can be interpreted as an index of
pairwise unconnectivity of the polyhedral cone K .

Two comments regarding the definition of ν(K ) are in order: firstly, the family F achiev-
ing the maximum in (40) is not necessarily unique; and, secondly, if F achieves the maximum
in (40), then F captures K . Without further ado we state:

Proposition 12 Let K ∈ �(Rn) be polyhedral and infra-dual. Then, for all A ∈ Sym(n),
one has

card[σlocmin(A, K )] ≤ ν(K ).

Proof Let Flocmin(A, K ) denote the set of all active faces. If Flocmin(A, K ) is pairwise
unconnected, then card[σlocmin(A, K )] ≤ card[Flocmin(A, K )] ≤ ν(K ), the first inequality
being due to Corollary 5(a). If Flocmin(A, K ) is not pairwise unconnected, then we drop from
Flocmin(A, K ) a face that is connected to another one in Flocmin(A, K ). This operation is
repeated until one ends with a subfamily F ⊂ Flocmin(A, K ) that is pairwise unconnected.
In view of Theorem 4(a), F produces as many local minimal values as Flocmin(A, K ). Hence,
card[σlocmin(A, K )] ≤ card[F] ≤ ν(K ). ��
Example 3 Consider again a cone K generated by a finite collection {g1, . . . , g p} of unit
vectors in R

3, cf. Fig. 3. Assume that none of the generators can be expressed as positive
linear combination of the others. The multichromatic number of this cone is ν(K ) = p. If

〈gi , g j 〉 ≥ 0 ∀i, j ∈ {1, . . . , p},
then K is infra-dual and Proposition 12 yields the upper bound card[σlocmin(A, K )] ≤ p for
all A ∈ Sym(3). This bound is better than (27), but this is not surprising because we are now
asking K to be infra-dual.

Corollary 6 Let A ∈ Sym(n) and K ∈ �(Rn) be an infra-dual convex cone generated by p
linearly independent unit vectors in R

n. Then, the cardinality of σlocmin(A, K ) cannot exceed

νp = p!
�p/2�! (p − �p/2�)! , (41)

where �r� stands for the lower integer part of r .
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Table 1 νn versus 2n − 1

Figures are approximate for large
values of n

n 2n − 1 νn

3 7 3

4 15 6

5 31 10

20 1.0 × 106 1.8 × 105

30 1.1 × 109 1.6 × 108

40 1.1 × 1012 1.4 × 1011

Proof In view of the linear independence hypothesis, the graph associated to K is the same
as the graph associated to the Pareto cone R

p
+. The corollary is then a consequence of Propo-

sition 12 and the fact that νp is the multichromatic number of R
p
+. Note that (41) corresponds

to the cardinality of

F ≡ �p/2�- dimensional faces of R
p
+,

a family that achieves the maximum in the definition of ν(Rp
+). ��

Corollary 6 applies in particular to p = n, that is to say, when K is a simplicial cone in R
n .

For a large dimension n one can use Stirling’s approximation formula n! ≈ √
2πn (n/e)n in

order to obtain

νn ≈
√

2

π

2n

√
n
.

Although νn grows less rapidly than 2n , the damping factor
√

n is not strong enough to
prevent a growth of exponential type (Table 1).

The next corollary is somewhat different in spirit. The idea is getting something better
than (41) in case we have already detected a particular active face. The next result is of special
interest if the detected face has low dimension or, on the contrary, a dimension close to dimK .

Corollary 7 Let A ∈ Sym(n) and K ∈ �(Rn) be an infra-dual convex cone generated by p
linearly independent unit vectors in R

n. If the variational problem (1) admits an active face
of dimension d ∈ {1, . . . , p}, then

card[σlocmin(A, K )] ≤ 2p − 2d − 2p−d + 2.

Proof Let F be an active face as indicated above. Given that F is d- dimensional, one clearly
has

2d − 2 = number of non-trivial faces strictly contained in F,

2p−d − 1 = number of faces strictly containing F.

These (2d − 2) + (2p−d − 1) faces are connected to F . If a particular face in this group is
active, then it produces the same local minimal value as F . So, when it comes to bound the
cardinality of σlocmin(A, K ), we can throw away this redundant group and keep only

2p − 1 − [(2d − 2)+ (2p−d − 1)] = 2p − 2d − 2p−d + 2

faces in all. ��
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7 Tightness of the cone constraint

Sufficient conditions for local optimality in cone-constrained optimization problems usually
invoke an assumption called strict complementarity. The question that is being addressed in
this section reads as follows:{

Under which assumption one can infer that a given normalized K - eigenvector of A
is a local solution to the variational problem (1)?

In order to answer this question we distinguish between two different situations. The first,
and simplest, situation occurs when the normalized K - eigenvector, say x , lies in the relative
interior of K . In such a case, in view of Proposition 3 and Remark 3, one has

x is a local solution to (1) ⇐⇒ 〈x, Ax〉 = λmin(A, spanK )

⇐⇒ x is a global solution to (1).

The second situation to be considered occurs when the K - eigenvector under examination
is a unit vector in the relative boundary of K . In order to handle this more interesting case we
introduce a suitable notion of strict complementarity that we call tightness. Our discussion
takes place in a context where constraints are defined by a polyhedral convex cone K . A
leading role is played by the canonical correspondence

�K : F(K ) → F(K +) (42)

F �→ �K (F) = [spanF]⊥ ∩ K +

between the faces of K and those of K +. For general results on the map (42) the reader can
consult the survey paper by Barker [1] or the book by Ziegler [17]. The work by Tam [16]
is also a good source of information.

Lemma 3 If K ∈ �(Rn) is polyhedral, then span[�K (F)] = [spanF]⊥ for all F ∈ F(K ).
Proof Observe that �K (F) = (K + spanF)+. That K is polyhedral ensures the closedness
of K + spanF . It is not difficult to check that

K + spanF = TK (x) ∀x ∈ ri(F), (43)

where TK (x) = R+(K − x). On the other hand, one has

TK (x) ∩ −TK (x) = spanF ∀x ∈ ri(F). (44)

We shall prove only TK (x) ∩ −TK (x) ⊂ spanF , the reverse inclusion being trivial. Take a
non-zero vector h in TK (x) ∩ −TK (x), i.e.,

h = α1(u1 − x)

−h = α2(u2 − x)

with α1, α2 > 0 and u1, u2 ∈ K . This yields in particular

x =
(

α1

α1 + α2

)
u1 +

(
α2

α1 + α2

)
u2.

Since F is a face of K , it follows that u1, u2 ∈ F . Hence, h ∈ spanF . Finally, by combining
(43) and (44), one obtains

span[�K (F)] = (K + spanF)+ − (K + spanF)+ = (TK (x))
+ − (TK (x))

+

= [TK (x) ∩ −TK (x)]
⊥ = [spanF]⊥.

This completes the proof of the lemma. ��
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That x ∈ K ∩ Sn is a K - eigenvector of A can be expressed in the compact form

Ax − 〈x, Ax〉x ∈ �K (F) (45)

with F being the face associated to x . Strict complementarity or tightness is an hypothesis
expressing that Ax − 〈x, Ax〉x belongs to the relative interior of �K (F).

What must be added to (45) in order to conclude that x is a local solution to (1)? The next
theorem answers this question and indicates the size of a ball

Bn(x, r) = {u ∈ R
n : ‖u − x‖ ≤ r}

around x over which local minimality takes place.

Theorem 5 Suppose that A ∈ Sym(n) is not a multiple of the identity matrix, that K ∈
�(Rn) is polyhedral, and that x is a unit vector in K whose associated face F is not equal
to K . Under the following hypotheses

(i) Ax − 〈x, Ax〉x ∈ ri[�K (F)] (tightness),
(ii) 〈x, Ax〉 = λmin(A, spanF) (minimality within the face),

one can infer that x is a local solution to (1). More precisely,

〈x, Ax〉 ≤ 〈u, Au〉 ∀u ∈ K ∩ Sn ∩ Bn(x, r),

where the radius r is given by

r = 2γ√
4α2 + β2

. (46)

Here

γ = min
v∈[spanF]⊥∩[�K (F)]+‖v‖=1

〈Ax − 〈x, Ax〉x, v〉 (47)

is a positive real number that measures the “degree of tightness” of x, and

α = max
h∈spanF

‖h‖=1

‖(A − 〈x, Ax〉I )h‖, (48)

β = max
h∈[spanF]⊥

‖h‖=1

‖(A − 〈x, Ax〉I )h‖, (49)

are the operator norms of the restrictions of A − 〈x, Ax〉I to the linear subspaces spanF
and [spanF]⊥, respectively.

Proof Since F is different from K itself, one has �K (F) �= {0}. In view of Lemma 3, a
consequence of the polyhedrality of K is that the tightness assumption (i) is equivalent to
the interiority condition

Ax − 〈x, Ax〉x ∈ int[spanF]⊥ [�K (F)] (50)

with int[spanF]⊥ [�K (F)] standing for the interior of �K (F) relative to [spanF]⊥. For the
sake of convenience we introduce the notation

L = spanF, M = [spanF]⊥, λ = 〈x, Ax〉, Ax = A − 〈x, Ax〉I.
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Consider a vector u ∈ K ∩ Sn ∩ Bn(x, r) different from x . Write

u − x = d = dL + dM

with dL and dM denoting the orthogonal projections of d onto L and M, respectively. If
dM = 0, then u remains in spanF and, in view of the hypothesis (ii), one gets

λ = λmin(A, spanF) ≤ 〈u, Au〉.
So, there is no loss of generality in assuming that dM �= 0. One has

〈u, Au〉 = 〈x, Ax〉 + 2〈Ax, d〉 + 〈d, Ad〉
= λ+ 2〈Ax, dL 〉 + 2〈Ax, dM 〉 + 〈d, Ad〉. (51)

But

〈Ax, dL 〉 = 〈Ax − λx︸ ︷︷ ︸
in M

, dL 〉 + λ〈x, dL 〉 = λ〈x, dL 〉 = λ〈x, d〉. (52)

Plugging (52) into (51) one gets

〈u, Au〉 = λ+ 2λ〈x, d〉 + 2〈Ax, dM 〉 + 〈d, Ad〉
= λ‖x + d‖2 + 2〈Ax, dM 〉 + 〈d, (A − λI )d〉
= λ+ 2〈Ax, dM 〉 + 〈d, Ax d〉.

Let us examine separately the terms 2〈Ax, dM 〉 and 〈d, Ax d〉. We shall prove that their sum is
non-negative. Our first observation is that dM ∈ M∩[�K (F)]+.To see that dM ∈ [�K (F)]+,
take w ∈ �K (F) = M ∩ K + and write

〈w, dM 〉 = 〈w, d − dL 〉 = 〈w, d〉 = 〈w, u〉 − 〈w, x〉 = 〈w, u〉 ≥ 0.

Hence,

〈Ax, dM 〉 = 〈Ax − λx, dM 〉 ≥ γ ‖dM‖ (53)

with γ being defined by (47). We claim that γ > 0. One can view�K (F) and M ∩[�K (F)]+
as mutually dual cones in the Hilbert space (M, 〈·, ·〉). Notice that Ax − λx belongs to the
interior of �K (F) (relative to the underlying space M). In particular, Ax − λx �= 0 and

〈Ax − λx, v〉 > 0

for any unit vector v in M ∩ [�K (F)]+. A compactness argument shows that the infimum
in (47) is attained and confirms the positivity of γ . Finally, let us examine the term

〈d, Ax d〉 = 〈dL , Ax dL 〉 + 2〈dM , Ax dL 〉 + 〈dM , Ax dM 〉.
As a consequence of the hypothesis (ii), the matrix Ax is positive semidefinite over the space
L , i.e., 〈dL , Ax dL 〉 ≥ 0. On the other hand,

|2〈dM , Ax dL 〉 + 〈dM , Ax dM 〉| ≤ 2|〈dM , Ax dL 〉| + |〈dM , Ax dM 〉|
≤ (

2‖Ax dL‖ + ‖Ax dM‖) ‖dM‖
≤ (2α‖dL‖ + β‖dM‖) ‖dM‖
≤ (

√
4α2 + β2 ‖d‖)‖dM‖

≤ 2γ ‖dM‖. (54)
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The combination of (53) and (54) shows that 2〈Ax, dM 〉 + 〈d, Ax d〉 ≥ 0 and completes the
proof. ��
Remark 6 Theorem 5 can be stated also in a non-polyhedral setting but one must consider (50)
as definition of tightness. We restricted our attention to the polyhedral case because the interi-
ority hypothesis (50) has little chance to be realised if the boundary of K posseses some kind
of “curvature”. The best way of understanding this point is by considering the Lorentz cone

K = {x ∈ R
n : xn ≥ [x2

1 + · · · + x2
n−1]1/2} (55)

which is the prototype of a non-polyhedral convex cone. This cone is self-dual. Excepting
for {0} and the cone K itself, any other face F of (55) is one-dimensional. Note that�K (F)
is a half-line and therefore it has an empty interior relative to the hyperplane [spanF]⊥.

The tightness condition stated in Theorem 5 looks highly technical and difficult to check
in practice. However, this is not always so. For instance, in the paretian case

minimize 〈u, Au〉 (56)

u ≥ 0, ‖u‖ = 1

the tightness condition takes a very simple form and the tightness coefficient γ can be easily
computed. The contraint u ≥ 0 in (56) expresses the fact that each component of the vector
u is non-negative.

The next corollary summarizes what we know about the paretian case. Corollary 8 is
obtained by combining Theorems 1 and 5. Given a non-empty index set J ⊂ {1, . . . , n}, the
symbol AJ stands for the principal submatrix of A formed with the rows and columns of A
indexed by J .

Corollary 8 Let A ∈ Sym(n). For x ∈ R
n to be a local solution to the variational problem

(56) it is necessary (respectively, sufficient) that

x j =
{

z j i f j ∈ J,
0 i f j /∈ J

(57)

for some non-empty index set J ⊂ {1, . . . , n} and some unit vector z ∈ R
cardJ satisfying the

Perron-type eigenvalue problem

AJ z = λ1(A
J )z, z j > 0 ∀ j ∈ J (58)

and ∑
j∈J

Ai j z j ≥ 0 ∀i /∈ J (59)

(respectively,
∑
j∈J

Ai j z j > 0 ∀i /∈ J ). (60)

Furthermore, the corresponding local minimal value is given by 〈x, Ax〉 = 〈z, AJ z〉 =
λ1(AJ ).

Proof Let {e1, . . . , en} denote the canonical basis of the space R
n . The index set J can be

identified with the face F = cone{e j : j ∈ J } of the n-dimensional Pareto cone. By keeping
in mind this identification, one sees that (57) corresponds to the transfer equation (33), the
Perron-type eigenvalue problem (58) reflects pre-activity, and (59) is part of the criticality con-
dition (2). This takes care of the necessary condition of local optimality. As far as sufficiency
is concerned, observe that (60) corresponds to the tightness condition stated in Theorem 5. ��

123



28 J Glob Optim (2009) 44:1–28

Remark 7 If J = {1, . . . , n}, then (60) holds vacuosly and we are dealing in fact with a
global solution. A more interesting situation occurs when J �= {1, . . . , n}. In such a case the
tightness coefficient (47) is expressible in the form

γ = min
i /∈J

∑
j∈J

Ai j z j = min
i /∈J

(Ax)i .

The operator norms (48) and (49) are also easily computable. Hence, one can evaluate without
troubles the radius (46) of the ball over which local minimality takes place.

References

1. Barker, G.P.: Theory of cones. Linear Algebra Appl. 39, 263–291 (1981)
2. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM

Publications, Philadelphia (1994)
3. Conrad, F., Brauner, C.M., Issard-Roch, F., Nicolaenko, B.: Nonlinear eigenvalue problems in elliptic

variational inequalities: a local study. Comm. Partial Differential Equations 10, 151–190 (1985)
4. Diestel, R.: Graph Theory. Graduate Texts in Mathematics 173. Springer-Verlag, New York (1997)
5. Do, C.: Problèmes de valeurs propres pour une inéquation variationnelle sur un cône et application

au flambement unilatéral d’une plaque mince. C. R. Acad. Sci. Paris 280, 45–48 (1975)
6. Iusem, A., Seeger, A.: On vectors achieving the maximal angle of a convex cone. Math.

Program. 104, 501–523 (2005)
7. Iusem, A., Seeger, A.: On convex cones with infinitely many critical angles. Optimization 56, 115–

128 (2007)
8. Iusem, A., Seeger, A.: Searching for critical angles in a convex cone. Math. Program. (2008, in

press) available online at doi:10.1007/s10107-007-0146-0
9. Klarbring, A.: On discrete and discretized nonlinear elastic structures in unilateral contact: stability,

uniqueness and variational principles. Int. J. Solids Structures 24, 459–479 (1988)
10. Pinto da Costa, A., Figueiredo, I.N., Judice, J.A., Martins, J.A.C.: A complementarity eigenproblem

in the stability of finite dimensional elastic systems with frictional contact. Complementarity:
Applications, Algorithms and Extensions, pp. 67–83. Applied Optimization Series 50. M. Ferris, O.
Mangasarian and J.S. Pang (Eds), Kluwer Acad. Publ., Dordrecht, 1999

11. Pinto da Costa, A., Martins, J.A.C., Figueiredo, I.N., Judice, J.J.: The directional instability problem
in systems with frictional contacts. Comput. Methods Appl. Mech. Engrg. 193, 357–384 (2004)

12. Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems. Part I: theory. Submitted.
13. Riddell, R.C.: Eigenvalue problems for nonlinear elliptic variational inequalities on a cone. J.

Functional Analysis 26, 333–355 (1977)
14. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity

conditions. Linear Algebra Appl. 292, 1–14 (1999)
15. Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–

206 (2003)
16. Tam, B.S.: On the duality operator of a convex cone. Linear Algebra Appl. 64, 33–56 (1985)
17. Ziegler, G.M.: Lectures on Polytopesj. Springer-Verlag, New York (1995)

123


	Local minima of quadratic forms on convex cones
	Abstract
	1 Introduction
	1.1 Formulation of the problem and aim of this work
	1.2 Necessary optimality conditions
	1.3 Dualization

	2 Local minima versus global minima
	3 How many local minimal values?
	4 The two-out-of-three rule
	5 Pre-activity as relaxation of local minimality
	6 Specific results for infra-dual cones
	7 Tightness of the cone constraint


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


